

## Future Materials for Sustainability Educational subject description sheet

### **Basic information**

| <b>Field of study</b><br>Joint Bachelor in Sustainability  |              | Education cycle<br>2025/26                                                            |
|------------------------------------------------------------|--------------|---------------------------------------------------------------------------------------|
| <b>Speciality</b><br>Sustainable Physics & Chemistry       |              | Subject code<br>UJ.WPAJBSSPCS.8100.16411.25                                           |
| Organizational unit<br>Faculty of Law and Administr        | ation        | Lecture languages<br>english                                                          |
| <b>Study level</b><br>first cycle (joint degree programme) |              | Subject related to scientific research<br>Yes                                         |
| <b>Study form</b><br>full-time degree programme            |              | <b>Disciplines</b><br>Chemical sciences, Physical sciences                            |
| Education profile<br>General academic<br>Mandatory         |              | ISCED classification<br>0588 Interdisciplinary programmes involving broad field<br>05 |
| obligatory                                                 |              | USOS code                                                                             |
| Subject coordinator                                        | Marlena Gryl |                                                                                       |
| Subject coordinator                                        | Marlena Gryl |                                                                                       |

| Lecturer | Andres Guerrero, Arantzazu Mascaraque, Albertina Cabañas, Maria Josefa Herrero, |
|----------|---------------------------------------------------------------------------------|
|          | Miguel Angel Gonzalez, Piotr Kuśtrowski, Sebastian Jarczewski, Dariusz Matoga,  |
|          | Elżbieta Szostak, Ewelina Lipiec, Jakub Rysz, Timo Leskinen, Mohammad Alzeer    |

| <b>Period</b><br>Semester 5 | Examination<br>exam<br>Activities and hours<br>Discussion class: 42 | Number of<br>ECTS points<br>5.0 |
|-----------------------------|---------------------------------------------------------------------|---------------------------------|
|-----------------------------|---------------------------------------------------------------------|---------------------------------|

### Goals

C1 The course explores the vital role of raw materials in modern technologies and their environmental impact, while aligning with circular economy principles. The course provides a foundation to green materials science concepts, the environmental implications of new materials, and their contribution to a sustainable society. In addition, students will be introduced to the legal, economic, and sociological dimensions of emerging sustainable materials as well as the evolving paradigms of technological advancement for driving meaningful change.

# Subject's learning outcomes

| Code       | Outcomes in terms of                                                                                                                                                                                                                                                                                      | Effects                   | Examination methods                |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|------------------------------------|
| Knowled    | ge - Student knows and understands:                                                                                                                                                                                                                                                                       |                           |                                    |
| W1         | raw materials and their utilization, including in green energy technologies.                                                                                                                                                                                                                              | JBS_K1_W05,<br>JBS_K1_W06 | written exam, credit with grade    |
| W2         | nanomaterials, catalysts, and adsorbents for environmental applications.                                                                                                                                                                                                                                  | JBS_K1_W07                | written exam, credit with grade    |
| W3         | sustainable polymers, gas storage materials, and photovoltaic cells.                                                                                                                                                                                                                                      | JBS_K1_W04                | written exam, credit with grade    |
| W4         | bioaspects of future materials, materials<br>characterization techniques, and materials for<br>environmental remediation                                                                                                                                                                                  | JBS_K1_W05                | written exam, credit with grade    |
| Skills - S | itudent can:                                                                                                                                                                                                                                                                                              |                           |                                    |
| U1         | evaluate the environmental impact of raw materials<br>and relate their demand to circular economy principles<br>and integration into green technologies, along with<br>analytical skills to evaluate the impact of new<br>materials on the environment and the remediation<br>and obtaining of resources. | JBS_K1_U01, JBS_K1_U03    | written exam, credit with<br>grade |
| U2         | analyze how current applications and developing future materials contribute to a sustainable society.                                                                                                                                                                                                     | JBS_K1_U02                | written exam, credit with grade    |
| U3         | apply general concepts related to green materials science and its metrics.                                                                                                                                                                                                                                | JBS_K1_U04                | written exam, credit with grade    |
| Social co  | ompetences - Student is ready for:                                                                                                                                                                                                                                                                        |                           |                                    |
| К1         | to engage in discussions on the legal, economic, and<br>sociological dimensions of emerging sustainable<br>materials, along with the ability to associate evolving<br>paradigms of technological advancement and their<br>societal implications.                                                          | JBS_K1_K01, JBS_K1_K03    | written exam, credit with<br>grade |
| K2         | to explore the role of future materials in circular<br>economy and sustainability, particularly in the<br>European context.                                                                                                                                                                               | JBS_K1_K02                | written exam, credit with<br>grade |
| К3         | to participate in discussions on micro-problems of the macro-world, such as sustainable development challenges in the plastic era.                                                                                                                                                                        | JBS_K1_K04                | written exam, credit with grade    |

# **Calculation of ECTS points**

| Activity form            | Activity hours* |
|--------------------------|-----------------|
| Discussion class         | 42              |
| preparation for classes  | 41              |
| paper preparation        | 20              |
| preparation for the exam | 38              |

| Student workload | Hours<br>141 | <b>ECTS</b><br>5.0 |
|------------------|--------------|--------------------|
|                  |              | 5.0                |

\* hour means 45 minutes

# Study content

| No. | Course content                                                                                                                                                     | Subject's learning<br>outcomes |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|
| 1.  | Raw materials, definition, current and future utilization of raw materials – examples (3h)                                                                         | W1, U1                         |
| 2.  | Priority raw materials, strategic raw materials, raw materials utilized in green energy technologies (1.5h)                                                        | W1, U1                         |
| 3.  | Sustainable strategies for the applications of raw materials (1.5 h)                                                                                               | W1, U1, U2                     |
| 4.  | Inorganic and carbon-based nanomaterials for sustainable future (definition, general information, controversy, health risk) (1.5 h)                                | W2, U1, U2                     |
| 5.  | Innovative catalysts, adsorbents and hybrid systems for elimination of VOCs and other purposes (1.5h)                                                              | W2, U1, U2                     |
| 6.  | Sustainable polymers and microplastics, challenges, environmental aspects and applications (3h)                                                                    | W3, U1, U2                     |
| 7.  | Novel gas storage materials (nanoporous materials, metal hydrides) (1.5h)                                                                                          | W3, U1                         |
| 8.  | Proton-conducting materials (MOFs, COFs, HOFs) related to proton-exchange membrane fuel cells (1.5h)                                                               | W3, U1, U2                     |
| 9.  | Third generation photovoltaic cells, materials and technology 3h                                                                                                   | W3, U1                         |
| 10. | Bioaspects of future materials, biological materials for environmental protection; biomass (3h)                                                                    | W4, U1                         |
| 11. | Materials Characterization Techniques (1.5 h)                                                                                                                      | W4, U1                         |
| 12. | Energy-efficient electronics and spintronics for the future digital society (1.5h)                                                                                 | U2, U3                         |
| 13. | Sustainable structural materials for construction (1.5h)                                                                                                           | W3, U1, U2                     |
| 14. | Applications of materials in a green economy: advanced sensors, rear-earth free permanent magnets, energy harvesting (3h)                                          | W2, W3, U1, U2                 |
| 15. | Toxicity, pollution and environmental legislation for new materials (1.5h)                                                                                         | U1, K1                         |
| 16. | Materials for environmental remediation (3 h)                                                                                                                      | W2, U1                         |
| 17. | Fly ashes from energy sector as valuable anthropogenic resources useful for synthesis of advanced functional materials (1.5h)                                      | U1                             |
| 18. | Phenolic-enabled assembly of functional nanomaterials as versatile and powerful strategy for biomedicine (1.5h)                                                    | W2, U1, U2                     |
| 19. | Materials for efficient valorization of CO2 (1.5h)                                                                                                                 | U1, U2                         |
| 20. | Challenges facing the chemical technology and industry (sustainable development goals, green chemistry rules, European green deal, etc.) (discussion session 1.5h) | К1, К2                         |
| 21. | Circular Economy and Sustainability in Europe: the role of the future materials.<br>(discussion Session 1.5h)                                                      | К2                             |
| 22. | Micro-problems of the macro-world, or how to follow the path of sustainable development in the ubiquitous plastic era (discussion Session 1.5h)                    | К3                             |

### **Course advanced**

#### Teaching methods :

conversation lecture, discussion

| Activities       | Examination methods             | Credit conditions                                                                       |
|------------------|---------------------------------|-----------------------------------------------------------------------------------------|
| Discussion class | written exam, credit with grade | final exam (50%) credit for group work: assignments (30%) $\&$ discussion session (20%) |

## **Entry requirements**

None

### Literature

### Obligatory

1. Lecture notes and provided scientific articles during lectures

# Effects

| Code       | Content                                                                                                                                                                                                                                                                                                                                                                                             |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| JBS_K1_K01 | The graduate can encourage sustainability-driven practices in the workplace and appraise sustainability of own values, perceptions, roles, and actions, with a special focus on environmental wellbeing.                                                                                                                                                                                            |
| JBS_K1_K02 | The graduate can demonstrate considerable entrepreneurial initiative, autonomy, and readiness to act in complex and changing environments, especially in the context of supporting, undertaking, and co-organising activities beneficial for a sustainable society.                                                                                                                                 |
| JBS_K1_K03 | The graduate can consider different visions of the future and develop own evidence-based opinions in reference to the balance of values linked to economic development, social welfare, and environmental protection.                                                                                                                                                                               |
| JBS_K1_K04 | The graduate can critically assess and verbalize own competencies and skills related to different aspects of sustainability as well as their need for development.                                                                                                                                                                                                                                  |
| JBS_K1_U01 | The graduate can critically analyse academic literature, formulate research questions and conduct research under supervision.                                                                                                                                                                                                                                                                       |
| JBS_K1_U02 | The graduate can present and report knowledge, methodologies, ideas, problems and solutions, clearly and comprehensively, in different forms destined for different audiences – including discussions and debates which require defending a substantiated opinion, as well as conversations in a foreign language at the CEFR B2 level.                                                             |
| JBS_K1_U03 | The graduate can apply adequate methods and tools, including selected IT tools, to solve problems related to data collection, analysis, and management in the context of sustainability.                                                                                                                                                                                                            |
| JBS_K1_U04 | The graduate can plan and effectuate simple sustainability-related projects under supervision and in the context of personal lifelong learning, both individually and in a team, using appropriate transversal skills and taking shared responsibility for the outcome.                                                                                                                             |
| JBS_K1_W04 | The graduate can identify sustainability-related problems specific to selected cultural, geographical, and political contexts.                                                                                                                                                                                                                                                                      |
| JBS_K1_W05 | The graduate can identify essential international instruments and institutions related to sustainability and explain their potential role in resolution of a given problem.                                                                                                                                                                                                                         |
| JBS_K1_W06 | The graduate can describe interconnections between various aspects of sustainability and identify their significance in the context of natural and social sciences, with a special focus on disciplines included in the selected specialisation track (law and politics; chemistry and physics; chemistry and biology; economics and geography; economics, management and engineering; humanities). |
| JBS_K1_W07 | The graduate can apply the theory and methodology of disciplines included in the selected specialisation track to sustainability-related problems, taking into consideration practical limitations such as protection of intellectual property.                                                                                                                                                     |