

Sustainable Chemistry Educational subject description sheet

Basic information

Field of study		Education cycle
Joint Bachelor in Sustainability		2025/26
Speciality Sustainable Physics & Chemi	stry	Subject code UJ.WPAJBSSPCS.8100.16410.25
Organizational unit Faculty of Law and Administr	ation	Lecture languages english
Study level		Subject related to scientific research
first cycle (joint degree programme)		Yes
Study form		Disciplines
full-time degree programme		Chemical sciences
Education profile		ISCED classification
General academic		0588 Interdisciplinary programmes involving broad field
Mandatory		05
obligatory		USOS code
Subject coordinator	Piotr Szwedo	
Lecturer	Mario Smet, Timo Leskinen, Pedro Camargo, Mohammad Alzeer	

Period Semester 5	Examination graded credit	Number of ECTS points 5.0
	Activities and hours Discussion class: 36	

Goals

C1 The course introduces the fundamental principles and definitions of sustainable chemistry. In this course, the students are introduced to the 12 principles of green chemistry, the UN sustainable development goals, circular economy, and life-cycle assessment. In addition, the course highlights the central role of chemistry in sustainable development by covering key advanced areas in chemistry and sustainability research including design of safer chemicals and greening chemical synthesis, the use of bio-based raw materials, the role of catalysis in energy production and environment remediation applications, and new materials for energy storage and conversion.

Subject's learning outcomes

Code	Outcomes in terms of	Effects	Examination methods
Knowledge - Student knows and understands:			
W1	the 12 principles of green chemistry and illustrate the connection to sustainability and circularity to achieve the UN SDGs	JBS_K1_W01, JBS_K1_W02, JBS_K1_W05, JBS_K1_W06	written credit, credit with grade
W2	how biomass and other waste-based feedstocks (plastic waste and CO2) can be transformed into chemical building blocks and biobased polymers	JBS_K1_W01, JBS_K1_W02, JBS_K1_W03, JBS_K1_W04, JBS_K1_W07	written credit, credit with grade
W3	how innovative techniques such as (organo)catalysis, Heterogeneous catalysis, photochemistry, electrochemistry, and flow chemistry can potentially enhance the sustainability on lab and industrial scale	JBS_K1_W04, JBS_K1_W06, JBS_K1_W07	written credit, credit with grade
W4	CCUS processes and can demonstrate the current benchmark techniques for decarbonising large-scale industries	JBS_K1_W03, JBS_K1_W04, JBS_K1_W06, JBS_K1_W07	written credit, credit with grade
Skills - Stu	ident can:		
U1	explain the most important mechanisms of take-up and toxicity of organic compounds and apply this knowledge to propose changes in the molecular structure resulting in lower toxicity with equal functionality	JBS_K1_U02, JBS_K1_U04	written credit, credit with grade
U2	describe synthesis and properties of the main types of biobased polymers and evaluate the biodegradability of a given polymer	JBS_K1_U02, JBS_K1_U04	written credit, credit with grade
Social competences - Student is ready for:			
К1	consider different visions of the future and develop their own evidence-based opinions on sustainable chemistry and its emploument in reference to the balance of values linked to economic development, social welfare, and environmental protection.	JBS_K1_K03, JBS_K1_K04, JBS_K1_K05	written credit, credit with grade

Calculation of ECTS points

Activity form	Activity hours*	
Discussion class	36	5
preparation for classes	38	3
preparation of a multimedia presentation	35	5
preparation for final test	39	
Student workload	Hours 148	ECTS 5.0

Study content

No.	Course content	Subject's learning outcomes
1.	Interactive lecture: Introduction	W1, K1
	• Why sustainable chemistry? The intrinsic conservative character of chemical practice and industry also because of safety concerns	
	Different sets of principles of sustainable chemistry	
	\bullet Concepts linked to sustainability - E.g. circularity, how chemistry is connected to 17 sustainability goals by the UN	
2.	Interactive lecture: Green chemistry	W1, K1
	• 12 principles of green chemistry, with practical examples	
3.	Interactive lecture: Life-cycle assessment	W1, K1
	• Principles of life-cycle assessment	
4.	Interactive lecture: Sustainable chemistry metrics	W1, K1
	 Concepts such as atom economy, E-factor – Ecoscore 	
5.	Interactive lecture: Greening of classical organic synthesis pathways	W1, K1
6.	Interactive lecture: Design of safer chemicals	U1, K1
	• the context of REACH	
	Main mechanisms of toxicity of organic molecules	
	• Design principles, molecular and formulation aspects, 'domestication' of chemistry	
	• Examples related to principles of chemical reactivity as discussed above	
	Retrometabolic design	
7.	Interactive lecture: Biobased and biodegradable plastics	U2, K1
	Concepts - biobased, biodegradable, and variations of these two	
	 The main benefits and drawbacks of polymers with respect to sustainability, macromolecules but also additives 	
	• 'Green plastics'	
	• PLA (is this really green?)	

No.	Course content	Subject's learning outcomes
8.	Interactive lecture: From lab scale to industry	W3, K1
	sustainable engineering principles	
	importance of yield in long processes	
	energy efficiency & integration	
	Introduction of different unit operations in the chemical industry	
	• Safety (safety culture, what happens when things go wrong - cases)	
9.	Interactive lecture: Circular economy in industries	W1, W2, K1
	• waste prevention and recycling	
	Introduction to major industries that utilize circular raw materials	
10.	Exercise session: Designing of green production of chemicals – Group exercise	W1, U1
11.	Exercise session: Designing of green production of chemicals – Group presentations	W1, U1, K1
12.	Interactive lecture: Lignin as raw material	W2, K1
	Structure and sources	
	 Processing by fractionation & depolymerization 	
	derivatization to new platform molecules	
	bisphenol A alternatives	
	• resins & urethanes	
13.	Interactive lecture: Organocatalysis	W2, W3, K1
	Organocatalysis versus transition metal catalysis	
	 Case study: CO2 as a useful building block for monomer synthesis towards more sustainable polycarbonates and polyurethanes 	
14.	Interactive lecture: Nanostructured materials and heterogeneous catalysis	W2, W3, K1
	• Heterogeneous catalysis	
	Nanostructured solid catalysts	
	Hetrogeneising catalytic reactions	
15.	Interactive lecture: Introduction to photocatalysis	W1, W2, W3, K1
	• Photocatalysis	
	• Applications (H2 production, environmental protection applications such as water treatment, oxidation VOCs)	

No.	Course content	Subject's learning outcomes
16.	Interactive lecture: Introduction to electrochemistry and electrocatalysis	W1, W2, W3, K1
	Electrochemistry/electrocatalysis	
	• Batteries	
17.	Interactive lecture: Applications of inorganic chemistry in catalysis and energy production and storage	W1, W2, W3, K1
	• Fuel cells (types, current advancement and challenges)	
	• PEM fuel cells (using green H2)	
	• Direct alcohol fuel cells (using bio-based ethanol)	
18.	Interactive lecture: Decarbonisation of industry	W2, W4, K1
	• CCUS	
	Decarbonisation strategies for large-scale industries	

Course advanced

Teaching methods :

conversation lecture

Activities	Examination methods	Credit conditions
Discussion class	written credit, credit with grade	final exam – 40%; assignments – 35%; presentations – 20%; questionnaire – 5%

Entry requirements

Inorganic chemistry and Organic chemistry 1

Literature

Obligatory

1. Lecture notes and provided scientific articles during lectures

Effects

Code	Content
JBS_K1_K03	The graduate can consider different visions of the future and develop own evidence-based opinions in reference to the balance of values linked to economic development, social welfare, and environmental protection.
JBS_K1_K04	The graduate can critically assess and verbalize own competencies and skills related to different aspects of sustainability as well as their need for development.
JBS_K1_K05	The graduate can defend the importance of scientific data and methods as a basis for decision-making.
JBS_K1_U02	The graduate can present and report knowledge, methodologies, ideas, problems and solutions, clearly and comprehensively, in different forms destined for different audiences – including discussions and debates which require defending a substantiated opinion, as well as conversations in a foreign language at the CEFR B2 level.
JBS_K1_U04	The graduate can plan and effectuate simple sustainability-related projects under supervision and in the context of personal lifelong learning, both individually and in a team, using appropriate transversal skills and taking shared responsibility for the outcome.
JBS_K1_W01	The graduate can describe the concept of sustainability and recognize the differences in relevant definitions, models and approaches.
JBS_K1_W02	The graduate can explain the axiological background of sustainability and summarize key stages of development of the concept.
JBS_K1_W03	The graduate can give examples of sustainability-related dilemmas and hypothesize on the optimal course of action.
JBS_K1_W04	The graduate can identify sustainability-related problems specific to selected cultural, geographical, and political contexts.
JBS_K1_W05	The graduate can identify essential international instruments and institutions related to sustainability and explain their potential role in resolution of a given problem.
JBS_K1_W06	The graduate can describe interconnections between various aspects of sustainability and identify their significance in the context of natural and social sciences, with a special focus on disciplines included in the selected specialisation track (law and politics; chemistry and physics; chemistry and biology; economics and geography; economics, management and engineering; humanities).
JBS_K1_W07	The graduate can apply the theory and methodology of disciplines included in the selected specialisation track to sustainability-related problems, taking into consideration practical limitations such as protection of intellectual property.