

Environmental Sustainability in the Field Educational subject description sheet

Basic information

Field of study	Education cycle
Joint Bachelor in Sustainability	2025/26
Speciality	Subject code
Environmental & Life Sciences	UJ.WPAJBSELSS.880.16547.25
Organizational unit	Lecture languages
Faculty of Law and Administration	english
Study level	Subject related to scientific research
first cycle (joint degree programme)	Yes
Study form	Disciplines
full-time degree programme	Biological sciences, Earth sciences and the environment
Education profile	ISCED classification
General academic	0521 Environmental sciences
Mandatory obligatory	USOS code

Maria Isabel Benito Moreno, Jose Maria Esbri, Maria de la Luz Garcia Lorenzo, Beata Klimek, Pablo Suárez González

Period Semester 4	Examination graded credit	Number of ECTS points 5.0
	Activities and hours Discussion class: 45	

Goals

The course aims to provide an overview of environmental challenges in soil and water contamination, covering geochemical characterization methods, ecotoxicology, and hands-on fieldwork experiences including visits to mining sites contaminated by potentially toxic elements and the Mar Menor lagoon. In addition, the socio-economic impact of contamination in this touristic area will be analysed. Participants will learn about remediation techniques such as chemical approaches, acidity neutralization, and revegetation, with practical exercises. Group discussions and presentations will focus on successful remediation projects and future career paths in environmental sustainability and remediation.

Subject's learning outcomes

Code	Outcomes in terms of	Effects	Examination methods
Knowled	ge - Student knows and understands:	1	1
W1	the major environmental issues associated with water and soil contamination	JBS_K1_W04	written credit, credit with grade
W2	geochemical characterization methods used at contaminated sites to identify pollution sources and dispersion routes	JBS_K1_W05	credit with grade, project
W3	the impact of eutrophication on aquatic ecosystems and associated environmental challenges	JBS_K1_W04	credit with grade, project
Skills - S	Student can:		
U1	develop practical skills in the field of ecotoxicology and environmental impact assessment	JBS_K1_U03	credit with grade, project
U2	acquire proficiency in handling portable analytical techniques and determining physicochemical parameters related to contamination	JBS_K1_U03	credit with grade, project
U3	enhance fieldwork skills through hands-on experience in conducting water quality assessments and soil sampling techniques	JBS_K1_U04	credit with grade, report
Social c	ompetences - Student is ready for:		
К1	to demonstrate critical thinking and problem-solving skills in assessing environmental risks, analyzing data, and proposing effective remediation solutions	JBS_K1_K03	credit with grade, project
K2	to demonstrate effective communication skills in presenting findings, discussing environmental issues	JBS_K1_K04, JBS_K1_K05	written credit, credit with grade, project
КЗ	to develop interdisciplinary perspectives by integrating knowledge from geology, geochemistry and environmental science to address environmental challenges	JBS_K1_K05	written credit, credit with grade, project

Calculation of ECTS points

Activity form	Activity hours*	
Discussion class	45	
preparation of a project	40	
report preparation	45	
preparation for the exam	20	
Student workload	Hours 150	ECTS 5.0

* hour means 45 minutes

Study content

No.	Course content	Subject's learning outcomes
1.	Introduction to Environmental Problems in Mining Activities and Soil Contamination	W1
2.	Geochemical Monitoring Methods for Contaminated Sites	W2
3.	Ecotoxicology and Environmental Impact Assessment	W1, W2
4.	Environmental Sustainability in Critical Raw Materials Production	W1
5.	Socio-economic Impact of Pollution Processes	К1
6.	Field Work and Hands-on Experience	U1, U2, U3, K1, K2
	Field visit to an abandoned mining district for on-site observations	
	Identification of pollution sources and dispersion routes through sedimentary processes	
	Hands-on activities involving portable analytical techniques and physicochemical parameter determination	
7.	Remediation Techniques: Chemical Approaches and Acidity Neutralization	K1, K2
	Remediation strategies for addressing chemical contamination.	
	Chemical neutralization techniques to mitigate acidity and reduce metal mobility.	
	Case studies on successful remediation projects using chemical approaches	
8.	Remediation Techniques: Revegetation and Ecosystem Restoration	К3
	Importance of revegetation in stabilizing soil and promoting ecological recovery	
	Selection of native species for mine site restoration	
	Practical exercises on seed collection, propagation, and planting techniques	
9.	Field work and Hands-on Experience: Mar Menor Eutrophication	W3, U1, U2, U3
	Field visit to the Mar Menor to observe eutrophication issues	
	Analysis of eutrophication causes and effects	
	Hands-on activities related to water quality assessment	
	Discussion on mitigation and restoration strategies for the Mar Menor	
10.	Group Discussions and Presentations on Remediation Projects	К1
	Group discussions on the challenges and successes of remediation projects	
	Presentation of individual or group projects related to remediation techniques	
	Peer feedback and constructive discussions on proposed solutions	
11.	Recap of key concepts and techniques covered in the course	K1
	Discussion on the future of environmental sustainability and remediation	
	Exploration of potential career paths and opportunities in the field	

Course advanced

Teaching methods :

conversation lecture, discussion, laboratories

Activities	Examination methods	Credit conditions
Discussion class	written credit, credit with grade, project, report	Written exam: 20%; Field notebook: 30%; Laboratory notebook: 25%; Project or assignment: 10%; Active participation: 10%; problem-solving assessment: 5%

Entry requirements

None

Literature

Obligatory

1. Materials provided by during the class and additional literature suggested by the lecturer

Effects

Code	Content	
JBS_K1_K03	The graduate can consider different visions of the future and develop own evidence-based opinions in reference to the balance of values linked to economic development, social welfare, and environmental protection.	
JBS_K1_K04	The graduate can critically assess and verbalize own competencies and skills related to different aspects of sustainability as well as their need for development.	
JBS_K1_K05	The graduate can defend the importance of scientific data and methods as a basis for decision-making.	
JBS_K1_U03	The graduate can apply adequate methods and tools, including selected IT tools, to solve problems related to data collection, analysis, and management in the context of sustainability.	
JBS_K1_U04	The graduate can plan and effectuate simple sustainability-related projects under supervision and in the context of personal lifelong learning, both individually and in a team, using appropriate transversal skills and taking shared responsibility for the outcome.	
JBS_K1_W04	The graduate can identify sustainability-related problems specific to selected cultural, geographical, and political contexts.	
JBS_K1_W05	The graduate can identify essential international instruments and institutions related to sustainability and explain their potential role in resolution of a given problem.	